Wednesday, November 11, 2009
Gordon, Flash based supercomputer
The San Diego Supercomputer Center (SDSC) at UC San Diego has been awarded a five-year, $20 million grant from the National Science Foundation (NSF) to build and operate a powerful supercomputer dedicated to solving critical science and societal problems now overwhelmed by the avalanche of data generated by the digital devices of our era.
A key feature of Gordon will be 32 “supernodes” based on an Intel system utilizing the newest processors available in 2011, and combining several state-of-the-art technological innovations through novel virtual shared-memory software provided by Scale MP, Inc. Each supernode consists of 32 compute nodes, capable of 240 gigaflops/node ( one gigaflop or GF equals a billion calculations per second ) and 64 gigabytes ( GB ) of DRAM. A supernode also incorporates 2 I/O nodes, each with 4 TB of flash memory. When tied together by virtual shared memory, each of the system’s 32 supernodes has the potential of 7.7 TF of compute power and 10 TB of memory ( 2 TB of DRAM and 8 TB of flash memory ).
A key feature of Gordon will be 32 “supernodes” based on an Intel system utilizing the newest processors available in 2011, and combining several state-of-the-art technological innovations through novel virtual shared-memory software provided by Scale MP, Inc. Each supernode consists of 32 compute nodes, capable of 240 gigaflops/node ( one gigaflop or GF equals a billion calculations per second ) and 64 gigabytes ( GB ) of DRAM. A supernode also incorporates 2 I/O nodes, each with 4 TB of flash memory. When tied together by virtual shared memory, each of the system’s 32 supernodes has the potential of 7.7 TF of compute power and 10 TB of memory ( 2 TB of DRAM and 8 TB of flash memory ).